VDOL/reorientation_3

reorientation optimal control problem (matrix 3 of 8)
Name reorientation_3 VDOL 2724 2,513 2,513 32,166 32,166 Optimal Control Problem Yes 2015 B. Senses, A. Rao T. Davis
Structural Rank 2,513 true 3 2 0 100% 100% no no real
Download ```Optimal control problem, Vehicle Dynamics & Optimization Lab, UF Anil Rao and Begum Senses, University of Florida http://vdol.mae.ufl.edu This matrix arises from an optimal control problem described below. Each optimal control problem gives rise to a sequence of matrices of different sizes when they are being solved inside GPOPS, an optimal control solver created by Anil Rao, Begum Senses, and others at in VDOL lab at the University of Florida. This is one of the matrices in one of these problems. The matrix is symmetric indefinite. Rao, Senses, and Davis have created a graph coarsening strategy that matches pairs of nodes. The mapping is given for this matrix, where map(i)=k means that node i in the original graph is mapped to node k in the smaller graph. map(i)=map(j)=k means that both nodes i and j are mapped to the same node k, and thus nodes i and j have been merged. This matrix consists of a set of nodes (rows/columns) and the names of these rows/cols are given Anil Rao, Begum Sense, and Tim Davis, 2015. VDOL/reorientation Minimum-time reorientation of an asymmetric rigid body optimal control problem is taken from Ref.~\cite{betts2010practical}. The goal of the problem is to determine the state and the control that minimize the time that is required to reorient a rigid body. The state of the system is defined by quaternians that gives the orientation of the spacecraft and the angular velocity of the spacecraft and the control of the system is torque. The vehicle data that is used to model the dynamics are taken from NASA X-ray Timing Explorer spacecraft. The specified accuracy tolerance of \$10^{-8}\$ were satisfied after eight mesh iterations. As the mesh refinement proceeds, the size of the KKT matrices increases from 677 to 3108. @book{betts2010practical, title={Practical Methods for Optimal Control and Estimation Using Nonlinear Programming}, author={Betts, John T}, volume={19}, year={2010}, publisher={SIAM Press}, address = {Philadelphia, Pennsylvania}, }```