Pajek/Wordnet3

Pajek network: Wordnet3 dictionary network
Name Wordnet3
Group Pajek
Matrix ID 1531
Num Rows 82,670
Num Cols 82,670
Nonzeros 132,964
Pattern Entries 132,964
Kind Directed Weighted Graph
Symmetric No
Date 2006
Author
Editor V. Batagelj
Structural Rank
Structural Rank Full
Num Dmperm Blocks
Strongly Connect Components 67,689
Num Explicit Zeros 0
Pattern Symmetry 17.7%
Numeric Symmetry 17.4%
Cholesky Candidate no
Positive Definite no
Type integer
Download MATLAB Rutherford Boeing Matrix Market
Notes
------------------------------------------------------------------------------
Pajek network converted to sparse adjacency matrix for inclusion in UF sparse 
matrix collection, Tim Davis.  For Pajek datasets, See V. Batagelj & A. Mrvar,
http://vlado.fmf.uni-lj.si/pub/networks/data/.                                
------------------------------------------------------------------------------
NOTE: this is a binary graph in the Pajek dataset, but where each edge has a  
label (not a weight) in the range 1 to 9.  The following labels are used:     
1  hypernym pointer                                                           
2  entailment pointer                                                         
3  similar pointer                                                            
4  member meronym pointer                                                     
5  substance meronym pointer                                                  
6  part meronym pointer                                                       
7  cause pointer                                                              
8  grouped pointer                                                            
9  attribute pointer                                                          
This is not a multigraph.  There are no edges (i,j) between the same nodes    
with the same label.  Thus, in the sparse matrix, the edge weight A(i,j)      
represents the label 1 through 9 of edge (i,j).  No loss of information       
occurs in this translation.  The above table is in aux.edgecode(1:9,:).       
Each node is a word in a dictionary.  aux.category(i) gives the category      
of the word:                                                                  
   1: n (noun?)       63099 words                                             
   3: a (adjective?)   5501 words                                             
   4: r (?)            2846 words                                             
   5: s (?)            6728 words.                                            
------------------------------------------------------------------------------