LPnetlib/lpi_klein3

Netlib LP problem klein3: minimize c'*x, where Ax=b, lo<=x<=hi
Name lpi_klein3
Group LPnetlib
Matrix ID 723
Num Rows 994
Num Cols 1,082
Nonzeros 13,101
Pattern Entries 13,101
Kind Linear Programming Problem
Symmetric No
Date
Author E. Klotz
Editor J. Chinneck
Structural Rank 994
Structural Rank Full true
Num Dmperm Blocks 1
Strongly Connect Components 1
Num Explicit Zeros 0
Pattern Symmetry 0%
Numeric Symmetry 0%
Cholesky Candidate no
Positive Definite no
Type integer
SVD Statistics
Matrix Norm 1.142134e+04
Minimum Singular Value 1.000000e+00
Condition Number 1.142134e+04
Rank 994
sprank(A)-rank(A) 0
Null Space Dimension 0
Full Numerical Rank? yes
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
An infeasible Netlib LP problem, in lp/infeas.  For more information        
send email to netlib@ornl.gov with the message:                             
                                                                            
	send index from lp                                                         
	send readme from lp/infeas                                                 
                                                                            
The lp/infeas directory contains infeasible linear programming test problems
collected by John W. Chinneck, Carleton Univ, Ontario Canada.  The following
are relevant excerpts from lp/infeas/readme (by John W. Chinneck):          
                                                                            
PROBLEM DESCRIPTION                                                         
-------------------                                                         
                                                                            
KLEIN1, KLEIN2, KLEIN3:  related small and medium size problems.            
Contributor:  Ed Klotz, CPLEX Optimization Inc.                             
                                                                            
Name       Rows   Cols   Nonzeros Bounds      Notes                         
klein3      995     88    12107