LPnetlib/lp_cre_d

Netlib LP problem cre_d: minimize c'*x, where Ax=b, lo<=x<=hi
Name lp_cre_d
Group LPnetlib
Matrix ID 612
Num Rows 8,926
Num Cols 73,948
Nonzeros 246,614
Pattern Entries 246,614
Kind Linear Programming Problem
Symmetric No
Date 1990
Author J. Kennington
Editor I. Lustig
Structural Rank 6,476
Structural Rank Full false
Num Dmperm Blocks 22
Strongly Connect Components 2,451
Num Explicit Zeros 0
Pattern Symmetry 0%
Numeric Symmetry 0%
Cholesky Candidate no
Positive Definite no
Type real
SVD Statistics
Matrix Norm 1.813195e+02
Minimum Singular Value 0
Condition Number Inf
Rank 6,468
sprank(A)-rank(A) 8
Null Space Dimension 2,458
Full Numerical Rank? no
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
A Netlib LP problem, in lp/data/kennington.  For more information             
send email to netlib@ornl.gov with the message:                               
                                                                              
	 send index from lp                                                          
	 send readme from lp/data                                                    
	 send readme from lp/data/kennington                                         
                                                                              
The following are relevant excerpts from lp/data/kennington/readme:           
                                                                              
                                                                              
The "Kennington" problems: sixteen problems described in "An Empirical        
Evaluation of the KORBX Algorithms for Military Airlift Applications"         
by W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, S. J.               
Wichmann (Operations Research vol. 38, no. 2 (1990), pp. 240-248).            
                                                                              
The following table gives some statistics for the "Kennington"                
problems.  The number of columns excludes slacks and surpluses.               
The bounds column tells how many entries appear in the BOUNDS                 
section of the MPS file.  The mpc column shows the bytes in                   
the problem after "uncompress" and before "emps"; MPS shows                   
the bytes after "emps".  The optimal values were computed by                  
Vanderbei's ALPO, running on an SGI computer (with binary IEEE                
arithmetic).                                                                  
                                                                              
Name       rows  columns  nonzeros  bounds      mpc      MPS     optimal value
                                                                              
CRE-A      3517    4067     19054        0    152726    659682   2.3595407e+07
CRE-B      9649   72447    328542        0   2119719  10478735   2.3129640e+07
CRE-C      3069    3678     16922        0    135315    587817   2.5275116e+07
CRE-D      8927   69980    312626        0   2022105   9964196   2.4454970e+07
KEN-07     2427    3602     11981     7204    150525    718748  -6.7952044e+08
KEN-11    14695   21349     70354    42698    928171   4167698  -6.9723823e+09
KEN-13    28633   42659    139834    85318   1836457   8254122  -1.0257395e+10
KEN-18   105128  154699    512719   309398   7138893  29855000  -5.2217025e+10
OSA-07     1119   23949    167643        0   1059475   5388666   5.3572252e+05
OSA-14     2338   52460    367220        0   2359656  11800249   1.1064628e+06
OSA-30     4351  100024    700160        0   4470876  22495351   2.1421399e+06
OSA-60    10281  232966   1630758        0  10377094  52402461   4.0440725e+06
PDS-02     2954    7535     21252     2134    197821    801690   2.8857862e+10
PDS-06     9882   28655     82269     9240    769564   3124272   2.7761038e+10
PDS-10    16559   48763    140063    16148   1313834   5331274   2.6727095e+10
PDS-20    33875  105728    304153    34888   2856653  11550890   2.3821659e+10
                                                                              
Submitted to Netlib by Irv Lustig.