JGD_Margulies/kneser_8_3_1

Combinatorial optimization as polynomial eqns, Susan Margulies, UC Davis
Name kneser_8_3_1
Group JGD_Margulies
Matrix ID 2165
Num Rows 15,737
Num Cols 15,681
Nonzeros 47,042
Pattern Entries 47,042
Kind Combinatorial Problem
Symmetric No
Date 2008
Author S. Margulies
Editor J.-G. Dumas
Structural Rank 14,897
Structural Rank Full false
Num Dmperm Blocks 3
Strongly Connect Components 1
Num Explicit Zeros 0
Pattern Symmetry 0%
Numeric Symmetry 0%
Cholesky Candidate no
Positive Definite no
Type binary
SVD Statistics
Matrix Norm 4.773574e+00
Minimum Singular Value 7.455411e-119
Condition Number 6.402831e+118
Rank 14,421
sprank(A)-rank(A) 476
Null Space Dimension 1,260
Full Numerical Rank? no
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
Combinatorial optimization as polynomial eqns, Susan Margulies, UC Davis
From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,            
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html               
                                                                        
http://arxiv.org/abs/0706.0578                                          
                                                                        
Expressing Combinatorial Optimization Problems by Systems of Polynomial 
Equations and the Nullstellensatz                                       
                                                                        
Authors: J.A. De Loera, J. Lee, Susan Margulies, S. Onn                 
                                                                        
(Submitted on 5 Jun 2007)                                               
                                                                        
Abstract: Systems of polynomial equations over the complex or real      
numbers can be used to model combinatorial problems. In this way, a     
combinatorial problem is feasible (e.g. a graph is 3-colorable,         
hamiltonian, etc.) if and only if a related system of polynomial        
equations has a solution. In the first part of this paper, we construct 
new polynomial encodings for the problems of finding in a graph its     
longest cycle, the largest planar subgraph, the edge-chromatic number,  
or the largest k-colorable subgraph.  For an infeasible polynomial      
system, the (complex) Hilbert Nullstellensatz gives a certificate that  
the associated combinatorial problem is infeasible. Thus, unless P =    
NP, there must exist an infinite sequence of infeasible instances of    
each hard combinatorial problem for which the minimum degree of a       
Hilbert Nullstellensatz certificate of the associated polynomial system 
grows.  We show that the minimum-degree of a Nullstellensatz            
certificate for the non-existence of a stable set of size greater than  
the stability number of the graph is the stability number of the graph. 
Moreover, such a certificate contains at least one term per stable set  
of G. In contrast, for non-3- colorability, we found only graphs with   
Nullstellensatz certificates of degree four.                            
                                                                        
Filename in JGD collection: Margulies/kneser_8_3_1.sms