FEM, cylindrical shell, 150x100 tri. mesh, R/t=1000
Name s3dkt3m2
Group GHS_psdef
Matrix ID 1276
Num Rows 90,449
Num Cols 90,449
Nonzeros 3,686,223
Pattern Entries 3,753,461
Kind Structural Problem
Symmetric Yes
Date 1997
Author R. Kouhia
Editor R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, R. Barrett, J. Dongarra
Structural Rank 90,449
Structural Rank Full true
Num Dmperm Blocks 1
Strongly Connect Components 1
Num Explicit Zeros 67,238
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate yes
Positive Definite yes
Type real
Download MATLAB Rutherford Boeing Matrix Market
%FILE  s3dkt3m2.mtx                                                            
%TITLE Cyl shell R/t=1000 unif 150x100 triang mesh DKT elem with drill rot     
%KEY   s3dkt3m2                                                                
%CONTRIBUTOR Reijo Kouhia (                                
%BEGIN DESCRIPTION                                                             
% Matrix from a static analysis of a cylindrical shell                         
% Radius to thickness ratio R/t = 1000                                         
% Length to radius ratio    R/L = 1                                            
% One octant discretized with uniform 150 x 100 triangular mesh                
% element:                                                                     
% facet-type shell element where the bending part is formulated                
% using the stabilized MITC theory (stabilization paramater 0.4)               
% the membrane part includes drilling rotations using                          
% the Hughes-Brezzi formulation with (regularizing parameter = G/1000,         
% where G is the shear modulus)                                                
% full 3-point integration                                                     
% --------------------------------------------------------------------------   
% Note:                                                                        
% The sparsity pattern of the matrix is determined from the element            
% connectivity data assuming that the element matrix is full.                  
% Since this case the  material model is linear isotropically elastic          
% and the FE mesh is  uniform there exist some zeros.                          
% Since the removal of those zero elements is trivial                          
% but the reconstruction of the current sparsity                               
% pattern is impossible from the sparsified structure without any further      
% knowledge of the element connectivity, the zeros are retained in this file.  
% ---------------------------------------------------------------------------  
%END DESCRIPTION