Cylshell/s2rmt3m1

FEM, cylindrical shell, 30x30 tri. mesh, stabilized MITC3 elements, R/t=100
Name s2rmt3m1
Group Cylshell
Matrix ID 1609
Num Rows 5,489
Num Cols 5,489
Nonzeros 217,681
Pattern Entries 219,521
Kind Structural Problem
Symmetric Yes
Date 1997
Author R. Kouhia
Editor R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, R. Barrett, J. Dongarra
Structural Rank 5,489
Structural Rank Full true
Num Dmperm Blocks 1
Strongly Connect Components 1
Num Explicit Zeros 1,840
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate yes
Positive Definite yes
Type real
SVD Statistics
Matrix Norm 9.668114e+04
Minimum Singular Value 3.874712e-04
Condition Number 2.495182e+08
Rank 5,489
sprank(A)-rank(A) 0
Null Space Dimension 0
Full Numerical Rank? yes
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
%                                                                              
%FILE  s2rmt3m1.mtx                                                            
%TITLE Cyl shell R/t=100 unif 30x30 trian mesh stab MITC3 elem with drill rot  
%KEY   s2rmt3m1                                                                
%                                                                              
%                                                                              
%CONTRIBUTOR Reijo Kouhia (reijo.kouhia@hut.fi)                                
%                                                                              
%BEGIN DESCRIPTION                                                             
% Matrix from a static analysis of a cylindrical shell                         
% Radius to thickness ratio R/t = 100                                          
% Length to radius ratio    R/L = 1                                            
% One octant discretized with uniform 30 x 30 triangular mesh                  
% element:                                                                     
% facet-type shell element where the bending part is formulated                
% using the stabilized MITC theory (stabilization paramater 0.4)               
% the membrane part includes drilling rotations using                          
% the Hughes-Brezzi formulation with (regularizing parameter = G/1000,         
% where G is the shear modulus)                                                
% full 3-point integration                                                     
% --------------------------------------------------------------------------   
% Note:                                                                        
% The sparsity pattern of the matrix is determined from the element            
% connectivity data assuming that the element matrix is full.                  
% Since this case the  material model is linear isotropically elastic          
% and the FE mesh is  uniform there exist some zeros.                          
% Since the removal of those zero elements is trivial                          
% but the reconstruction of the current sparsity                               
% pattern is impossible from the sparsified structure without any further      
% knowledge of the element connectivity, the zeros are retained in this file.  
% ---------------------------------------------------------------------------  
%END DESCRIPTION                                                               
%                                                                              
%