FlowIPM22/uni_chimera_i1
max flow Chimera graph: FlowIPM22/uni_chimera_i1
Name |
uni_chimera_i1 |
Group |
FlowIPM22 |
Matrix ID |
2900 |
Num Rows
|
100,000 |
Num Cols
|
100,000 |
Nonzeros
|
1,100,592 |
Pattern Entries
|
1,100,592 |
Kind
|
Undirected Weighted Graph |
Symmetric
|
Yes |
Date
|
2023 |
Author
|
Y. Gao, R. Kyng, D. Spielman |
Editor
|
T. Davis |
Structural Rank |
|
Structural Rank Full |
|
Num Dmperm Blocks
|
|
Strongly Connect Components
|
1 |
Num Explicit Zeros
|
0 |
Pattern Symmetry
|
100% |
Numeric Symmetry
|
100% |
Cholesky Candidate
|
yes |
Positive Definite
|
yes |
Type
|
real |
Download |
MATLAB
Rutherford Boeing
Matrix Market
|
Notes |
FlowIPM22: Laplacians from Newton-Steps of Maxflow Short-step IPM on
Chimera Graphs
A collection of matrices arising from solving maximum flow problems on a
diverse collection of graphs (known as Chimeras) using a short-step
interior point method. The Laplacian matrices arise when computing Newton
steps of the interior point method.
The matrices are symmetric graph Laplacians, meaning they are symmetric
diagonally dominant matrices with non-positive off-diagonals and row sums
equal to zero.
Generated by Yuan Gao, Rasmus Kyng, and Daniel Spielman. 2022.
References:
data set: https://www.spe.org/web/csp/datasets/set02.htm
An Algebraic Sparsified Nested Dissection Algorithm Using Low-Rank
Approximations Léopold Cambier, Chao Chen, Erik G. Boman, Sivasankaran
Rajamanickam, Raymond S. Tuminaro, and Eric Darve
SIAM Journal on Matrix Analysis and Applications, vol 41, no 2,
pp 715-746, 2020. https://epubs.siam.org/doi/10.1137/19M123806X
Problem set name: uni_chimera_i1
The primary matrix is the first matrix in the set.
Original matrix names in this sequence:
1: ipmMat/uni_chimera.n100000.i1.eps1.0e-5.1.mm
2: ipmMat/uni_chimera.n100000.i1.eps1.0e-5.2.mm
3: ipmMat/uni_chimera.n100000.i1.eps1.0e-5.3.mm
4: ipmMat/uni_chimera.n100000.i1.eps1.0e-5.4.mm
5: ipmMat/uni_chimera.n100000.i1.eps0.0001.1.mm
6: ipmMat/uni_chimera.n100000.i1.eps0.0001.2.mm
7: ipmMat/uni_chimera.n100000.i1.eps0.0001.3.mm
8: ipmMat/uni_chimera.n100000.i1.eps0.0001.4.mm
9: ipmMat/uni_chimera.n100000.i1.eps0.0001.5.mm
10: ipmMat/uni_chimera.n100000.i1.eps0.0001.6.mm
11: ipmMat/uni_chimera.n100000.i1.eps0.001.1.mm
12: ipmMat/uni_chimera.n100000.i1.eps0.001.2.mm
13: ipmMat/uni_chimera.n100000.i1.eps0.001.3.mm
14: ipmMat/uni_chimera.n100000.i1.eps0.001.4.mm
15: ipmMat/uni_chimera.n100000.i1.eps0.001.5.mm
16: ipmMat/uni_chimera.n100000.i1.eps0.001.6.mm
17: ipmMat/uni_chimera.n100000.i1.eps0.01.1.mm
18: ipmMat/uni_chimera.n100000.i1.eps0.01.2.mm
19: ipmMat/uni_chimera.n100000.i1.eps0.01.3.mm
20: ipmMat/uni_chimera.n100000.i1.eps0.01.4.mm
21: ipmMat/uni_chimera.n100000.i1.eps0.01.5.mm
22: ipmMat/uni_chimera.n100000.i1.eps0.01.6.mm
23: ipmMat/uni_chimera.n100000.i1.eps0.1.1.mm
24: ipmMat/uni_chimera.n100000.i1.eps0.1.2.mm
25: ipmMat/uni_chimera.n100000.i1.eps0.1.3.mm
26: ipmMat/uni_chimera.n100000.i1.eps0.1.4.mm
27: ipmMat/uni_chimera.n100000.i1.eps0.1.5.mm
28: ipmMat/uni_chimera.n100000.i1.eps0.1.6.mm
|