## AG-Monien/debr

De Bruijn graph sequence

Name | debr |
---|---|

Group | AG-Monien |

Matrix ID | 2439 |

Num Rows | 1,048,576 |

Num Cols | 1,048,576 |

Nonzeros | 4,194,298 |

Pattern Entries | 4,194,298 |

Kind | Undirected Graph Sequence |

Symmetric | Yes |

Date | 1998 |

Author | R. Diekmann, R. Preis |

Editor | R. Diekmann, R. Preis |

Download | MATLAB Rutherford Boeing Matrix Market |
---|---|

Notes |
AG-Monien Graph Collection, Ralf Diekmann and Robert Preis http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html A collection of test graphs from various sources. Many of the graphs include XY or XYZ coordinates. This set also includes some graphs from the Harwell-Boeing collection, the NASA matrices, and some random matrices which are not included here in the AG-Monien/ group of the UF Collection. In addition, two graphs already appear in other groups: AG-Monien/big : same as Nasa/barth5, Pothen/barth5 (not included here) AG-Monien/cage_3_11 : same as Pajek/GD98_c (included here) The AG-Monien/GRID subset is not included. It contains square grids that are already well-represented in the UF Collection. Six of the problem sets are included as sequences, each sequence being a single problem instance in the UF Collection: bfly: 10 butterfly graphs 3..12 cage: 45 cage graphs 3..12 cca: 10 cube-connected cycle graphs, no wrap ccc: 10 cube-connected cycle graphs, with wrap debr: 18 De Bruijn graphs se: 13 shuffle-exchange graphs Problem.aux.G{:} are the graphs in these 6 sequences. Problem.aux.Gname{:} are the original names of each graph, and Problemm.aux.Gcoord{:} are the xy or xyz coordinates of each node, if present. Graphs in the debr sequence: 1 : DEBR3 : 8 nodes 13 edges 26 nonzeros 2 : DEBR4 : 16 nodes 29 edges 58 nonzeros 3 : DEBR5 : 32 nodes 61 edges 122 nonzeros 4 : DEBR6 : 64 nodes 125 edges 250 nonzeros 5 : DEBR7 : 128 nodes 253 edges 506 nonzeros 6 : DEBR8 : 256 nodes 509 edges 1018 nonzeros 7 : DEBR9 : 512 nodes 1021 edges 2042 nonzeros 8 : DEBR10 : 1024 nodes 2045 edges 4090 nonzeros 9 : DEBR11 : 2048 nodes 4093 edges 8186 nonzeros 10 : DEBR12 : 4096 nodes 8189 edges 16378 nonzeros 11 : DEBR13 : 8192 nodes 16381 edges 32762 nonzeros 12 : DEBR14 : 16384 nodes 32765 edges 65530 nonzeros 13 : DEBR15 : 32768 nodes 65533 edges 131066 nonzeros 14 : DEBR16 : 65536 nodes 131069 edges 262138 nonzeros 15 : DEBR17 : 131072 nodes 262141 edges 524282 nonzeros 16 : DEBR18 : 262144 nodes 524285 edges 1048570 nonzeros 17 : DEBR19 : 524288 nodes 1048573 edges 2097146 nonzeros 18 : DEBR20 : 1048576 nodes 2097149 edges 4194298 nonzeros The primary graph (Problem.A) in this sequence is the last graph in the sequence. |